月入过万为何存不下钱?

Approach指解决问题或达成目标的具体方法或路径,包括策略、步骤和工具的选择与实施,旨在系统化、高效地实现预期结果。

To solve this problem, we need to find the maximum number of distinct prime factors for any number in the inclusive range [left, right]. The solution involves iterating through each number in the given range, computing its prime factors, and keeping track of the maximum count of distinct prime factors encountered.

  1. Problem Analysis: The task is to determine the highest number of distinct prime factors for any number within a specified range. A prime factor is a prime number that divides the given number exactly.
  2. Key Insight: For each number in the range [left, right], we decompose it into its distinct prime factors. The count of these distinct primes is then compared to find the maximum count across all numbers in the range.
  3. Algorithm Selection:
    • Iterate over each number from left to right.
    • For each number, compute its distinct prime factors by checking divisibility starting from 2 up to the square root of the number.
    • Maintain a running maximum of the distinct prime factors count.
  4. Complexity Analysis:
    • Time Complexity: For each number n, the prime factorization takes O(√n) time. In the worst case, processing all numbers from left to right leads to O((right – left + 1) * √right) time complexity.
    • Space Complexity: O(1) additional space is used, as we only store counts and temporary variables.

Solution Code

class Solution:
    def maximumPrimeFactors(self, left: int, right: int) -> int:
        max_count = 0
        for num in range(left, right + 1):
            count = 0
            temp = num
            factor = 2
            while factor * factor <= temp:
                if temp % factor == 0:
                    count += 1
                    while temp % factor == 0:
                        temp //= factor
                factor += 1
            if temp > 1:
                count += 1
            if count > max_count:
                max_count = count
        return max_count

Explanation

  1. Initialization: Start with max_count set to 0 to keep track of the highest number of distinct prime factors found.
  2. Iterate Through Range: For each number num in the range [left, right]:
    • Initialize count to 0 for the current number.
    • Use a temporary variable temp set to num to perform factorization.
    • Check divisibility starting from factor = 2 up to √temp.
  3. Prime Factorization:
    • If factor divides temp, increment count (indicating a distinct prime factor) and divide temp by factor until it is no longer divisible.
    • Move to the next factor.
  4. Remaining Prime Factor: If after processing all factors up to √temp, temp is greater than 1, it is also a prime factor, so increment count.
  5. Update Maximum: Compare count with max_count and update max_count if count is greater.
  6. Return Result: After processing all numbers, return max_count, which holds the maximum distinct prime factors for any number in the range.

This approach efficiently checks each number in the range, computes its distinct prime factors, and tracks the maximum count encountered, providing the solution to the problem.

原创文章,发布者:酷番叔,转转请注明出处:https://cloud.kd.cn/ask/9014.html

(0)
酷番叔酷番叔
上一篇 5小时前
下一篇 5小时前

相关推荐

  • Linux如何高效搜索文件?

    命令行工具(最常用)find 命令(精准搜索)功能:递归搜索目录,支持名称、类型、时间等条件基础语法: find [路径] [选项] [表达式]常用示例:按名称搜索(区分大小写): find /home -name "*.txt" # 搜索/home下所有.txt文件按名称搜索(不区分大小写……

    6天前
    1100
  • 如何免费下载完整项目源码?

    在Linux VPS上安装插件是优化服务器功能的关键操作,以下是详细指南,涵盖通用流程、常见场景及安全实践,严格遵循Linux系统管理规范:核心准备工作系统更新sudo apt update && sudo apt upgrade # Debian/Ubuntusudo yum update……

    2025年6月15日
    1900
  • 如何清理缓存并更新软件包解决卡顿?

    在Linux系统中安装yum(Yellowdog Updater Modified)主要适用于基于RPM的发行版(如CentOS、RHEL、Fedora),以下是详细步骤和注意事项,内容严格遵循技术准确性并参考官方文档:确认系统环境检查当前发行版运行命令:cat /etc/os-release仅CentOS/R……

    2025年7月10日
    1700
  • 如何正确使用 sudo 命令?

    在Linux系统中,root用户拥有最高权限,可执行所有操作(包括修改系统文件、安装软件等),但滥用root权限可能导致系统崩溃或安全风险,因此需谨慎操作,以下是几种以root身份执行命令的方法,每种方法均附使用场景和注意事项:sudo(Super User Do)允许授权用户临时以root权限执行命令,无需切……

    2025年6月13日
    2100
  • 你知道吗?90%的人都不知道的真相

    环境准备Linux系统默认自带GCC编译器(GNU Compiler Collection),通过终端验证安装:gcc –version若未安装,使用包管理器安装:Debian/Ubuntu:sudo apt install build-essentialCentOS/RHEL:sudo yum groupi……

    2025年7月17日
    1600

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们

400-880-8834

在线咨询: QQ交谈

邮件:HI@E.KD.CN

关注微信